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ABSTRACT
Modern data analytics applications prefer to use column-storage

formats due to their improved storage efficiency through encoding

and compression. Parquet is the most popular file format for col-

umn data storage that provides several of these benefits out of the

box. However, geospatial data is not readily supported by Parquet.

This paper introduces Spatial Parquet, a Parquet extension that

efficiently supports geospatial data. Spatial Parquet inherits all the

advantages of Parquet for non-spatial data, such as rich data types,

compression, and column/row filtering. Additionally, it adds three

new features to accommodate geospatial data. First, it introduces

a geospatial data type that can encode all standard spatial geome-

tries in a column format compatible with Parquet. Second, it adds a

new lossless and efficient encoding method, termed FP-delta, that

is customized to efficiently store geospatial coordinates stored in

floating-point format. Third, it adds a light-weight spatial index that

allows the reader to skip non-relevant parts of the file for increased

read efficiency. Experiments on large-scale real data showed that

Spatial Parquet can reduce the data size by a factor of three even

without compression. Compression can further reduce the storage

size. Additionally, Spatial Parquet can reduce the reading time by

two orders of magnitude when the light-weight index is applied.

This initial prototype can open new research directions to further

improve geospatial data storage in column format.
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1 INTRODUCTION
Recently, there has been a tremendous increase in the amount of

publicly available data that are used for data science and data anal-

ysis projects. To store any dataset on disk, the two major formats

are row-oriented and column-oriented formats. Traditional row-

oriented formats, such as CSV and JSON, store the entire record

in consecutive disk locations. These formats are usually easier to

process and are suitable when the entire record is needed. However,

for analytical jobs that need to access a few fields, i.e., columns, they

add unnecessary overhead. Thus, column-oriented formats have

been proposed to overcome these limitations. In column formats,

the entire column is stored in consecutive bytes on disk which

provides some unique advantages over row formats.

One of the most popular column formats is Parquet [14] which

is inspired by Google’s Dremel [10] system. Parquet is more geared

towards big variety data by allowing nested and repeated attributes

such as in JSON files. With the increasing amount of geospatial data,

Parquet is a very attractive solution that has the potential of saving

a significant amount of disk space while increasing the performance

of data analysis jobs. However, Parquet is not readily suitable for

geospatial data that is more complicated than simple numeric values.

In this paper, we present Spatial Parquet, an extension to the Parquet

file format that adds support for spatial vector data.

The rest of this paper is organized as follows. Section 2 explains

how we structure all standard geospatial data in Spatial Parquet.

Section 3 describes the FP-delta encoding method. Section 4 in-

troduces the light-weight spatial index. Experimental evaluation

results are detailed in Section 5. The related work is explained in

Section 6. Finally, Section 7 concludes the paper.

2 THE STRUCTURE
This section describes how Spatial Parquet stores all the geometry

attributes into a unified structure when writing to disk and how it

reconstructs themwhen reading back from disk. There are twomain

challenges to overcome. First, since Parquet requires all records

to have the same schema, we need to create one common schema

that can support all the geometry types. The second challenge is

to ensure that this structure keeps the semantic meaning of all the

individual parts of the geometries to facilitate efficient storage and

retrieval, e.g., the coordinates and sub-parts of some geometries.

To overcome these challenges, we propose the following schema,

based on Google’s Protocol Buffers Format (PBF):

message Geometry {
required int type;
repeated group part {
repeated group coordinate {
required double x;
required double y;

}
}

}

https://doi.org/10.1145/3557915.3561038
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Figure 1: Column representation for a Polygon

Now, let us explain the structure above. The type attribute stores
a numerical value that represents the geometry type, i.e., 1=Point,

2=LineString, ... etc. We reserve type 0 to represent empty geome-

tries. The outer group, part, represents a connected component in

the geometry. For example, in a Polygon, the outer shell and each

inner hole is a part. Finally, the coordinate group represents a

sequence of coordinates that comprise one part. For brevity, this pa-

per assumes two-dimensional coordinates but the structure above

can be directly extended to support three dimensions or more by

adding their values in the inner-most group. Notice that PBF allows

any level of nesting so if the geometry is a part of a feature along

with other attributes, the entire definition above will be a single

group in the feature.

Now, looking at the structure above, we can see that it overcomes

the two challenges described earlier. First, this unified structure can

support all geometry types. Second, this structure contains three

columns, type, x, and y, where each one holds a semantic meaning

to the geometry and all of them are visible to Parquet to store them

efficiently. Additionally, the overhead of maintaining the double

nested group, i.e., part and coordinate, is minimal thanks to the

Parquet structure.

Figure 1 illustrates an example of a polygon with one hole. All

other geometry types are easily represented under this scheme

except GeometryCollection which needs some tweaks. Interested

readers can refer to [13] for the full details.

3 THE ENCODING
This section describes how we encode the column-represented

geometries in Spatial Parquet to improve the storage efficiency.

The geometry type is stored as an integer in the range [0, 6]. In
almost all practical cases, all geometries in one dataset have the

same type. Therefore, run-length-encoding (RLE) is used to encode

the geometry type value. RLE replaces consecutive entries with the

same value with two numbers, count and value.

The 𝑥 and 𝑦 coordinates are stored in floating-point representa-

tion
1
. A very popular encoding for integer values is delta encoding

which stores the first value in a column in full, and then for sub-

sequent values it stores only the delta between each value and its

previous one. Unfortunately, delta encoding can only be directly

1
This paper assumes 64-bit IEEE double floating-point representation but the discussion

seamlessly applies to 32-bit single floating-point representation.

Algorithm 1 FP-delta encoding algorithm*

1: function FP-delta-encode(double[] 𝑋 , BitOutputStream out)

2: 𝑛∗
= computeBestDeltaBits(𝑋 )

3: resetMarker = -1≫ (64-𝑛∗
)

4: significantOnes = -1 ≪ (𝑛∗
)

5: out.write(𝑛∗
, 8)

6: out.write(𝑋 [0], 64)
7: for 𝑖 = 1 to |𝑋 | − 1 do
8: delta = cast-long(𝑋 [𝑖 ])-cast-long(𝑋 [𝑖 − 1])
9: zigzag = (delta ≫ 63) ⊕ (delta ≪ 1)

10: if (zigzag & significantOnes ≠ 0) or (zigzag = resetMarker) then
11: out.write(resetMarker, 𝑛∗

)

12: out.write(𝑋 [𝑖 ], 64)
13: else
14: out.write(zigzag, 𝑛∗

)

* ≫ is the arithmetic shift right,≫ is the logical shift right, ≪ is shift left, & is the

logical AND operator, and ⊕ is bit-wise XOR

applied to integer values. In the IEEE floating point data represen-

tation, a smaller magnitude value does not necessarily need fewer

bits. This is because any floating point value has to be represented

in the (sign, exponent, fraction) format.

When looking at the geometry coordinates, we observe that

subsequent values are usually close to each other. For example, a

trajectory represented as a MultiPoint is expected to have geograph-

ically nearby values. Thus, for both 𝑥 and 𝑦 coordinates, every two

consecutive values will have a very small difference. However, as

mentioned earlier, if we just compute the floating-point difference,

we cannot directly reduce the number of significant bits in the

number. However, we make another observation that subsequent

values are mostly within the same order of magnitude. In other

words, they are expected to have either the same, or very close

exponents in their floating point representation. Furthermore, if

they have the same exponent, then their fractions are also expected

to have a small difference.

FP-delta Encoding: Based on the observations above, we pro-

posed a floating-point-delta encoding, FP-delta, that requires only

one single operation to calculate. FP-delta simply calculates the

difference of the integer interpretation of the floating point values.

In other words, we ignore the (sign, exponent, fraction) representa-

tion and just treat the entire 64-bit double floating-point value is a

64-bit two’s complement long integer value. Of course, the differ-

ence in this case does not necessarily hold any physical meaning.

However, since the exponents are in the most significant part of

the value, and if the exponents are similar, then they will cancel

each other. Furthermore, if they cancel each other, the resulting

delta will represent the difference between the two fractions. Thus,

if the two values have the same exponent and their values are close

to each other, the FP-delta value is expected to have only a few

significant bits which allows us to reduce the amount of storage. As

in integer-based delta encoding, we follow our FP-delta encoding

with zigzag encoding which maps the deltas of ⟨0, 1,−1, 2,−2, . . .⟩
to the positive-only value of ⟨0, 1, 2, 3, 4, . . .⟩. This encoding simply

removes the leading ones that are present in negative values in

the two’s complement representation. Algorithm 1 provides the

pseudo-code of the FP-delta encoding algorithm. Refer to [13] for

more details about the encoding/decoding steps.
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Table 1: Experiment Datasets

Dataset (Acronym) Geometry Type # of Geometries Num points

Porto Taxi (PT) MultiPoint 1.7 M 83 M

TIGER18/Roads (TR) MultiLineString 18 M 350 M

MSBuildings (MB) Polygon 125 M 753 M

eBird (eB) Point 801 M 801 M

4 THE INDEXING
Parquet provides a light-weight method for pruning non-relevant

records by adding column statistics. The structure we propose in
Spatial Parquet gives us the opportunity of collecting statistics

for the 𝑥 and 𝑦 columns. This is only possible because Parquet

identifies each of these as a separate column. In contrast, if we

store the entire geometry in the Well-Known-Binary (WKB) format,

Parquet will not be able to collect these statistics. Together, the

ranges of 𝑥 and 𝑦 make a spatial bounding box for each page. Thus

index construction is as simple as instructing Parquet to collect the

minimum and maximum for the 𝑥 and 𝑦 columns and store them

in the output file. This can work as a grid index that can be used

for range queries.

To improve the effectiveness of the index, we add a sorting step

that tries to cluster nearby records. Notice that it does not have to

be perfect. All we need is to avoid the very bad situation where each

page covers the entire world. Thus, we do not want to pay a high

cost for a very accurate partitioning technique. We decided to use

two light-weight space filling curve sort methods, namely, Z-curve

and Hilbert curve. Both techniques can provide a linear sort order

that takes into account both 𝑥 and𝑦 coordinates, with Hilbert curve

known to be more effective with a slightly higher computation cost.

Furthermore, since this is not a traditional hierarchical index with

a single root, we do not care about sorting the entire dataset which

can be very costly. Rather, we process the records into groups with

a fixed number of records, reducing the computational cost.

5 EXPERIMENTS
This section shows the results of an extensive experimental evalua-

tion that compares Spatial Parquet to existing spatial data formats,

as well as, studying the effect of various parameters.

We use four datasets for all evaluations. All the dataset are pub-

licly available on UCR-Star [6] and are summarized in Table 1.

The versions of these datasets only contain geometry data, and all

objects are stripped of any metadata.

We implement Spatial Parquet in Java based on the original Par-

quet Java repository. We compare Spatial Parquet to three existing

baselines: GeoParquet, ShapeFile, and GeoJSON.

First, we evaluate these formats based on the total size without

compression. The left part of Table 2 shows the size of data stored

in these formats without any compression. For all datasets, Spatial

Parquet with delta encoding significantly decreases the size of the

data. In the case of the PT, MB and eB datasets, its size is less than

half that of the nearest size. Compressing the data using a general

purpose compression technique can further reduce the sizes. Note

that there are some differences in how the compression is applied

to these formats, which is the reason GeoJSON has the smallest

Table 2: Output size in GB with/without compression

Uncompressed Compressed
Format PT TR MB eB PT TR MB eB
Spatial Parquet 0.856 3.5 8.2 11 0.388 1.9 4.0 1.9

GeoParquet 1.8 6 17 43 0.718 3.5 8.7 6

ShapeFile 1.4 6.4 19 28 0.654 3.5 7.8 5.7

GeoJSON 2.2 14 32 97 0.439 2.2 3.8 1.8

Table 3: Write/Read time in seconds for uncompressed for-
mats

Writing Time Reading Time
Format PT TR MB eB PT TR MB eB
Spatial Parquet 74 215 544 833 49 143 455 546

GeoParquet 226 99 425 1490 17 64 204 500
ShapeFile 123 490 1445 4246 88 43 161 534

GeoJSON 105 485 956 2342 55 424 610 1280

size in two cases. Refer to [13] for details and discussion about

performance implications.

Next, we compare the writing time of Spatial Parquet against

the baselines. Table 3 shows the writing time in seconds for the

uncompressed files. Spatial Parquet has the best performance by

far for the PT and eB datasets. However, it performs slower than

GeoParquet on the TR and MB datasets. These two datasets con-

tain geometries of type MultiLineString and Polygon, respectively.

These two data-types are more complex than the Point and Multi-

Point types. More complex types require more calls to the Parquet

interface, since we send each individual value by itself, and it has

to track the size of each geometry part. Because Parquet has BYTE

ARRAY as a native type the Well-Known-Binary (WKB) is sent

directly as one value through the Parquet interface. Keep in mind

that our current implementation is a first-cut solution while WKB

reading and writing has been optimized for years. Given the huge

space saving of Spatial Parquet, we will further optimize the writing

operation to reduce any potential overhead.

Finally, we compare Spatial Parquet to the baselines in terms of

the reading time. Table 3 shows the reading time in seconds for

the uncompressed files. GeoParquet and Shapefile have the best

reading times. Similar to writing, reading data in WKB is much

more efficient than requesting values repeatedly through Parquet.

In the following, we delve into Spatial Parquet to evaluate the

possible configurations for it. First, we look into the effect of using

FP-delta with andwithout compression, before applying any sorting.

In Figure 2a, in all cases, FP-delta results in a smaller size with and

without GZIP compression, except for the eB dataset. eB is not

sorted by default and since all of its geometries are points, there

is no gain from applying the delta to a single geometry object.

Therefore, sorting is required to significantly reduce the size. We

show the sizes of compressed data after sorting in Figure 2b. The

main difference can be noticed in the eB dataset because it contains

unsorted records of type Point.

Both FP-delta and sorting add benefits in reducing the final

data size, but they add some performance overhead. In the worst

case, it seems that FP-delta adds up to 80% of overhead compared
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Figure 2: The effect of sorting on output size in SpatialParquet

to writing the plain double values. Sorting can add a significant

overhead, because it is performed sequentially on a buffer of size at

most one million objects. However, considering the major benefits

it adds, this overhead can be justified. Moreover, in practice we can

sort very big data using distributed sorting/indexing techniques.

Beast [3] has several of these methods implemented on top of Spark.

We plan to integrate Spatial Parquet within Beast, which would

make sorting/indexing, among other optimizations, amore seamless

process. Also, refer to [13] for more details about this overhead.

Parquet by default collects column statistics for column groups,

and chunks. In this experiment, we show the case when no filter is

applied, and two additional cases with a small range filter, covering

less than 0.01% of the total area covered by the dataset, and a some-

what larger range filter, covering something between 0.33% to 4%

depending on the dataset. Figure 3 shows these results for reading

based on these configurations. Note that this filtering is applied per

column group first, and then per column chunk. The figure clearly

highlights the benefit of this type of filtering. Note that GeoParquet

has similar benefit in terms of pruning parts of columns, but it

stores additional columns for the minimum-bounding-rectangle

and applies the filters based on them.

To summarize, Spatial Parquet can significantly reduce the size

of geospatial data, improve the query performance, with a minimal

overhead. We call on the geospatial community to widely adopt it

in real applications.
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Figure 3: The performance of the light-weight spatial index

6 RELATEDWORK
Column Formats. Column stores [14] have been proposed for

data warehousing and analytical queries due to their efficient stor-

age and retrieval. To support semi-structured big-data with nest-

ing and repetition, Dremel [10] was introduced by Google which

then inspired the open-source Parquet file format [14]. An experi-

mental evaluation [4] showed the efficiency of Parquet with text

data compared to ORC. The only existing attempt to provide a

column-oriented format for geo-spatial data is GeoParquet [5], also

referred to as geo-arrow, which encodes the geometry value in

the Well-Known Binary (WKB) format. However, as shown in the

experiments, this does not provide a good output size since it can

only apply general purpose compression methods.

Encoding. Parquet ships with encoding techniques for integer

and string values, e.g., delta, run-length, and dictionary encoding

[1, 7, 9, 11]. We use RLE for the type column but none of these tech-

niques work with floating-point coordinates. Due to the complex-

ity of encoding floating-point values, some recent work proposed

methods that are tailored for specific applications, however, none

of these focuses on geographic coordinates. Gorilla [12] targets

time series data. It applies XOR between consecutive values and

adds post-processing steps to remove leading and trailing zeros.

Similarly, the work in [2] focuses on time series data and improves

over Gorilla [12]. Also, [8] focuses on time series data but provides

a different approach by encoding similar patterns in time series by

mapping them to a dictionary.

7 CONCLUSION
This paper introduced Spatial Parquet, a column-oriented file format

for geospatial data. Spatial Parquet is designed to store large-scale

spatial data in a column format that reduces disk size and improves

the performance of analytical queries.
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